
Engineered neuronal assemblies and 
functional connectivity analysis

Sergio Martinoia
Neuroengineering and Neurotechnologies LAB

Department of Informatics, Bioengineering, Robotics and System 

Engineering, University of Genova

sergio.martinoia@unige.it

1st Brandyschool2019 25 June 2019



UNIGE @ ILMENAU
12th December 2012

•CMOS based MEAs

•Neural signal analysis and 
connectivity

•Neural activity modulation by 
nanoparticles

Outline
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Neural-interfaces: technological advances

“(…) Progress in large-scale recording of neuronal activity depends 
on the development of three critical components: the neuron-
electrode interface, methods for spike sorting /identification and 
tools for the analysis and interpretation of parallel spike trains. In 
addition to increasing the numbers of recording sites on silicon 
probes, the development of on-chip interface circuitry is another 
priority. (…)” 

from G. Buzsáki, “ Large-scale recording of neuronal ensembles”, Nature Neuroscience, Vol. 7, No. 7, May 

2004

▪ large under-sampling of the network activity (~10’000:100)

▪ limited number of microelectrodes (60-120)

▪ limited electrode pitch (~100 μm)

need of new enabling technologies

need of new analysis methods
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CMOS based approach

Herr et al., Biosensors and Bioelectronics, (2007), pp. 2546–2553

Fromherz et al., J Neurophysiol, (2006), pp. 1638–1645

▪ CMOS-based microelectrode array 
with 11'016 metal electrodes

▪ 128 addressable electrodes at a 
sampling rate of 20kH

▪ Now improved version

▪ 16384 Field Effect Transistor array with 
7.8 µm x 7.8 µm pitch

▪ recording from all electrodes at a 
sampling rate of 2kHz

▪ 4225 Field Effect Transistor array with 
1024 stimulating sites

▪ recording from all electrodes at a 
sampling rate of 25 kHz

▪ High-signal quality

Hierleman gorup ETH



CMOS based approach for in vivo

Nature (2017)
Fully Integrated Silicon Probes for High-Density Recording of Neural Activity 

T. Harris et al., Janelia Research Campus
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•IDEA: UE NEST project (2005-2008)
•Start-up (in Switzerland) (2011- www.3brain.com)

Berdondini et al. Lab on a Chip, 2009; Maccione et al., Front. In Neuroeng., 2010, Gandolfo et al., j. Neural Eng., 2010

High-density CMOS based device

Samlab's
Sensors, Actuators and 
Microsystems Lab

http://www.3brain.com/
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A long-story: 15 years of experience in 
CMOS-MEAs

7

2012
BioCAM 4096

2015
BioCAM X

2004
BioCAM Idea

2019
BioCAM DupleX
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High-density large scale CMOS-MEAs

8

APOLLO
Gen 0-1

ARTEMIS
Gen 2

KHÌRON
Gen 3

TBD
Gen 4

4096 recording el.
42 µm pitch
2.7 x 2.7 mm2 sensing 
area
3 x 3 mm2 flat area

4096 recording el.
42 µm pitch
2.7 x 2.7 mm2 sensing 
area
6 x 6 mm2 flat area

4096 recording el.
16 stim el.
81 µm pitch
5.1 x 5.1 mm2 sensing 
area
6 x 6 mm2 flat area 4096 recording el.

4096 stim el.
60 µm pitch
3.8 x 3.8 mm2 sensing 
area
6 x 6 mm2 flat area

Under 
development
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The Active Pixel Sensor (APS) technology
• redesigned in order to sense the electrophysiological signals

• each electrode/pixel integrates a pre-amplifier

no. of electrodes

electrode size

electrode separation

active area

spatial density

sampling rate

data rate

4096

21 µm

21 µm

~ 7 mm2

~ 580 el/mm2

7.7 - 125 kHz

~ 0.5 Gbit/s

Frame grabber
Data storage and Visualization

Host Computer ADCs
FPGA (pre-processing)

Serializer

Interface Board

Multiplexed Channels

Camera Link

The high-density APS-MEA platform
▪ oriented to image/video concepts

electrode/pixel

High-density CMOS based device
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Low-resolution 
~19 el/mm2

Covered area: 
~2,7 mm2

High-resolution: 
~580 el/mm2

Covered area:
~ 7 mm2

Full resolution Low resolution

2D networks on high-density APS
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Low-resolution 
(~19 el/mm2)

Medium-scale 
(~2,7 mm2)

High-resolution 
(~580 el/mm2)

Large-scale 
(~ 7 mm2) 

Full resolution Low resolution

2D networks on high-density APS
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Example: dissociated cultures – whole 
network synchronous activity

Post natal 14 DIVs mouse culture 
30 msec synchronous event 

Embryonic 22 DIVs rat culture
100 msec synchronous event
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Example: structural and functional 
identification of sub-networks

excitatory not GABAergic neuron

inhibitory GABAergic neuron

350 
[µm]

40 
[µm]

40 
[µm]

Gad65

NeuN

BIII

Basal Bic 30 µM

MFR mean stdErr mean stdErr

Exc 0.63 0.05 0.88 0.08

Inh 1.14 0.08 1.36 0.13

TTEST ** *

TTEST

**

-



UNIGE @ ILMENAU
12th December 2012

Example: coupling electrophysiological 
and topological info

14

F. Ullo et al., Front. Neuro Anatomy 2014
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Example: epileptic model for 
anticonvulsant compound testing 
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Ferrea et al. 2012, Front. Neural Circuits
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Example: compound effect on purkinje
activity in cerebellum slice

Ca2+-activated K+

channels modulators 
alter PCs firing

In collaboration with

A Ugolini et al. – Fens 2018 
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Engineered neuronal assemblies: 
data analysis

“(…) Progress in large-scale recording of neuronal activity depends 
on the development of three critical components: the neuron-
electrode interface, methods for spike sorting /identification and 
tools for the analysis and interpretation of parallel spike trains. In 
addition to increasing the numbers of recording sites on silicon 
probes, the development of on-chip interface circuitry is another 
priority. (…)” 

from G. Buzsáki, “ Large-scale recording of neuronal ensembles”, Nature Neuroscience, Vol. 7, No. 7, May 

2004

need of new enabling technologies

need of new analysis methods
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Functional connectivity 
estimated by means of  Cross-
Correlation based techniques 
and information theory methods

Structural vs functional connectivity

Garofalo et al. Plos One, (2009)

Maccione et al. J. Neurosci Methods (2012)
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Functional-effective connectivity methods: 
Transfer Entropy revisited

𝑇𝐸𝑦−>𝑥 = ෍

𝑥𝑡𝑥𝑡−1𝑦𝑡−1

𝑝 𝑥𝑡+1, 𝑥𝑡
(𝑘) , 𝑦𝑡+1−𝑑

(𝑙) 𝑙𝑜𝑔
𝑝 𝑥𝑡+1|𝑥𝑡

(𝑘), 𝑦𝑡+1−𝑑
(𝑙)

𝑝 𝑥𝑡+1, 𝑥𝑡
(𝑘)

• for a reference spike train x, and a target spike train y
• the couple (k, l) defines the TE’s order

Considering d varying from 1 to a fixed number, we can build a temporal function TE(d)

Pastore et al. Frontiers in Neuroinformatics (2016)

Vito Paolo Pastore, PhD student
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Simple cross-correlation revisited
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CC is able to detect the inhibitory links

Pastore et al., 2018, Plos Computational Biology

Functional-effective connectivity methods: 
Cross-Correlation revisited
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• It has been validated on in silico neural
networks with 1000 neurons

• Identification of inhibithory links!

• Improvement of excitatory link detection

• Very good delay reconstruction

• Very good degree distribution reconstruction

Pastore et al. Plos Comp. Biol. (2018)

Filtered Normalized Cross-Correlation
Histogram (FNCCH)
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Functional-effective connectivity
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Connectivty & dynamics

Feldst, S., Bonifazi P., Cossart R., “Dissecting functional connectivity of neuronal microcircuits: experimental and 
theoretical insight”. TINS, 34, 225, (2011)

Graph Theory can be 
used to:

explore and compare 
structural and 
functional brain 
networks

classify => topology



UNIGE @ ILMENAU
12th December 2012

Graph theory and connectivty

Bullmore, E., Sporns, O., (2009) “Complex brain networks: graph theoretical analysis of structural and functional 
systems”. Nature, , 10, 186-201.

Clustering Coefficient (CC):

quantifies the number of 
connections that exist 
between the nearest 
neighbours of a node.

Topology of the network

parameters

Mean Path Length (PL): 
minimum number of edges 
that must be traversed to 
go from one node to 
another.



Scale-Free (SF) networksRandom (RND) networks Small-World (SW) networks

Each pair of nodes has an equal 
probability of being connected

Degree distribution follows a  
Gaussian distribution

Few nodes connected to many 
others (hubs)

Degree distribution follows a power 
law

Between totally regular and 
random

Highly clustered but short path 
length

Erdos P., Renyi A.  Publicationes Mathematicae, Vol. 
6, pp. 290-297, 1959

Watts D.J., Strogats S.H. Nature, Vol. 393,
pp.440-442, 1998.

Barabási A-L., Albert R. Science, Vol. 286, pp.509-512, 
1999.

Network models

B+C: It is hypothesized to reflect an optimal configuration associated with rapid synchronization and 
information transfer



Network topology: MEA-60 and MEA-4k

Small-world topological properties found in large-scale networks
Scale-free networks
Rich-club: privileged sub-networks



Modulation of network dynamics

Modulation by chemical compounds: specific for receptors but difficult for a 
spatially confined delivery

Modulation by direct electrical stimulation: unspecific but spatially confined
(you need an electrode properly placed)

What about remote non invasive neuro modulation?

Optogenetics and optical stimulation could be a partial answer.
Pros: specificity 
Cons: still invasive; it implies a genetic modification of the cells…



Barium titanate
nanoparticles
BTNP

Engineered networks with piezo-electric 

nanoparticles

Gianni Ciofani

Camilo Rojas, PhD

ultrasound induced stimulation

Rojas et al. J. Neural Eng., (2018)
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BaTiO3 Nanoparticles

• wrapped in Arabic gum
• hydrodynamic size: 479.0 ± 145.3 nm (by DLS)
• biocompatible

20 µm

with tetragonal crystalline phase (perovskite-like) → piezoelectric
with cubic crystalline phase → non-piezoelectric• commercially available

1MHz 2kPa
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Acoustic stimulation: excitation BTNP
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50 sec

US pulse train

after

Acoustic stimulation: excitation

1st stim

2nd stim

3rd stim
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US stimulation mediated by piezoelectric nanoparticles

induces an excitatory response in cultured neural

networks

A. Marino et al. ACS Nano Vol.9, 7678 (2015) 

local change in electric potential 

increased open probability of voltage-gated channels

action potential

mechanical deformation
electro-elastic model of BTNP 

Which mechanism?



Gold Nano Rods
GNR

Engineered networks with Gold Nano Rods

Yoonkey Nam

Andrea Andolfi, MS
When gold particles are synthesized at the nanoscale 
they improve their surface plasmon resonance, 
acquiring very interesting plasmonic properties. 
Thanks to these properties, gold nanoparticles find 
numerous applications in different fields, such as:

• Cancer therapy 

• Biomedical sensing and imaging

• Drug delivery

• Nanophotonics

• Neural activity modulation

…

Korean Advanced Institute of 
Science and Technology



nanoscale

macroscale

Engineered networks with GNRs: photo 

thermal inhibition

Functionalized
microbeads



Engineered microsystems: brain-on-a-chip



Summary and conclusions

Tools and technologies for analyzing engineered model systems: e.g., 
high-density large scale MEA devices

Reliable analysis methods to infer connectivity. Ground truth problem, in 
silico models, in vitro models. Connectivity methods are at the basis to 
infer topology. A large number of nodes is needed…

Further engineered neuronal systems with nanoparticles for neural 
activity modulation:
Piezo nano-particles for stimulation
Gold nano-rods for inhibition

In vitro 3D models for brain-on-a-chip applications, towards engineered 
brain organoids and patient specific medicine
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Thanks for your attention!


